References
1 van der Waals, J. D.: The Thermodynamic Theory of Capillarity under
the Hypothesis of a Continuous Variation in Density (translated by J. Rowlinson).
J. Stat. Phys. vol. 20, p. 197 (1979)
2 Korteweg, D. J.: Sur la forme que prennent les équations du mouvements
des fluides si l'on tient compte des forces capillaires causées par des
variations de densité considérables mais coninues et sur la théorie
de la capillarité dans l'hypothèse d'une variation continue de
la densité. Archives Néerlandaises des Sciences Exactes et Naturelles
vol. 6, p. 1 (1901)
3 Lowengrub, J.,Truskinovsky, L.: Cahn-Hilliard Fluids and Topological Transitions.
Proc. Roy. Soc. London A vol. p. (1997)
4 Zeldovich, Y. B.: About Surface Tension of a Boundary between two Mutually
Soluble Liquids. Zhur. Fiz. Khim. (in Russian) vol. 23, p. 931 (1949)
5 Davis, H. T. A Theory of Tension at a Miscible Displacement Front: in Numerical
Simulation in Oil Recovery, Volumes in Mathematics and its Applications,; M.
Wheeler, Ed.; Springer-Verlag: Berlin, 1988; pp 105
6 Rowlinson, J. S.,Widom, B.: Molecular Theory of Capillarity. Clarendon Press,
Oxford (1982)
7 Rousar, I.,Nauman, E. B.: A Continuum Analysis of Surface Tension in Nonequilibrium
Systems. Chem. Eng. Comm. vol. 129, p. 19 (1994)
8 Garik, P., Hetrick, J., Orr , B., Barkey, D.,Ben-Jacob, E.: Interfacial Cellular
Mixing and a Conjecture on Global Deposit Morphology. Phys. Rev. Ltts vol.
66, p. 1606 (1991)
9 Mungall, J. E.: Interfacial Tension in Miscible Two-Fluid Systems with Linear
Viscoelastic Rheology. Phys. Rev. Ltts. vol. 73, p. 288 (1994)
10 Castellanos, A.,González, A.: Interfacial Electrohydrodynamic Instability:
The Kath and Hoburg Model Revisited. Phys. Fluids A vol. 4, p. 1307 (1992)
11 Petitjeans, P.,Maxworthy, T.: Miscible displacements in capillary tubes.
Part 1. Experiments. J. Fluid Mech. vol. 326, p. 37 (1996)
12 Petitjeans, P.: Une Tension de Surface pour les Fluides Miscibles. C.R.
Acad. Sci. Paris vol. 322, p. 673 (1996)
13 Joseph, D. D.,Renardy, Y. Y.: Fundamentals of Two-Fluid Dynamics. Part II.
Lubricated Transport, Drops and Miscible Fluids. Springer, New York (1992)
14 Pojman, J. A., Whitmore, C., Lombardo, R., Marszalek, J., Parker, R.,Zoltowski,
B.: Evidence for the Existence of an Effective Interfacial Tension between
Miscible Fluids: 1. Isobutyric Acid-Water in a Spinning Drop Tensiometer. vol.
p. (Submitted
to Langmuir)
15 Lombardo, R., Marszalek, J., Liveria, M. L. T.,Pojman, o. A.: Definitive
Evidence for the Existence of an Effective Interfacial Tension between Miscible
Fluids.
2.1-butanol-Water in a Spinning Drop Tensiometer. vol. p. (Submitted to Langmuir)
16 Cahn, J. W.,Hilliard, J. E.: Free Energy of a Nonuniform System. I. Interfacial
Free Energy. J. Chem. Phys. vol. 28, p. 258 (1958)
17 Chen, C.-Y.,Meiburg, E.: Miscible displacements in capillary tubes. Part
2. Numerical simulations. J. Fluid Mech. vol. 326, p. 57 (1996)
18 Chen, C.-Y., Wang, L.,Meiburg, E.: Miscible Droplets in a Porous Medium
and the Effect of Korteweg Stresses. Phys. Fluids vol. 13, p. 2447 (2001)
19 Meiburg, E., Chen, C.-Y.,Wang, L.-L.: The Dynamics of Miscible Interfaces
and the Effects of Korteweg Stresses. Trans. Aero. Astro. Soc. R. O. C. vol.
33, p. 7 (2001)
20 Chen, C.-Y.,Meiburg, E.: Miscible displacements in capillary tubes: Influence
of Korteweg stresses and divergence effects. Phys. Fluids vol. 14, p. 2052
(2003)
21 Volpert, V. A., Pojman, J. A.,Texier-Picard, R.: Convection Induced by Composition
Gradients in Miscible Systems. C. R. Mecanique vol. 330, p. 353 (2002)
22 Bessonov, N., Pojman, J. A.,Volpert, V.: Modelling of Diffuse Interfaces
with Temperature Gradients. J. Engineering Math. vol. 49, p. 321 (2004)
23 Bessonov, N., Pojman, J.,Volpert, V.: Modelling of Miscible Liquids and
Microgravity Experiments. Matapli (Journal of Le Société de Mathématiques
Appliquées & Industrielle) vol. 75, p. 51 (2004)
24 Bessonov, N., Volpert, V. A., Pojman, J. A.,Zoltowski, B. D.: Numerical
Simulations of Convection Induced by Korteweg Stresses in Miscible Polymer-
Monomer Systems.
Microgravity Sci. Tech. vol. XVII, p. 8 (2005)
25
26 Kamotani, Y.,Ostrach, S.: Analysis of Velocity data taken in Surface Tension
Driven Convection Experiment in Microgravity. Phys. Fluids vol. 6, p. 3601
(1994)
27 Balasubramaniam, R., Lacy, C. E., Woniak, G.,Subramanian, R. S.: Thermocapillary
Migration of Bubbles and Drops at Moderate Values of the Marangoni Number in
Reduced Gravity. Phys. Fluids vol. 8, p. 872 (1996)
28 Antanovskii, L. K., Monti, R., R. Fortezza, G. D.,Castagnolo, D.: Transient
Marangoni Migration of a Bubble within a Solidifying Material in Microgravity
Environment. ELGRA Annual Meeting and General Assembly vol. p. (1993)
29 Wei, H.,Subramanian, R. S.: Migration of a Pair of Bubbles under the Combined
Action of Gravity and Thermocapillarity. Journal of Colloid and Interface Science
vol. 172, p. 395 (1995)
30 Tomotika, S.: On the Instability of a Cylindrical Thread of a Viscous Liquid
Surrounded by Another Viscous Fluid. Proc. Roy. Soc. (London) vol. A150, p.
322 (1935)
31 Tomotika, S.: Breaking up of a Drop of Viscous Liquid Immersed in Another
Viscous Fluid Which is Extending at a Uniform Rate. Proc. Roy. Soc. (London)
vol. 153, p. 302 (1936)
32 Bessonov, N. M.,Song, D. J.: Application of Vector Calculus to Numerical
Solutions of Continuum Mechanics Problems. J. Comp. Phys. vol. 167, p. 22 (2001)
33 Sano, Y.,Yamamoto, S.: Mutual Diffusion Coefficient of Aqueous Sugar Solutions.
J. Chem. Engin. Japan vol. 26, p. 633 (1993)